Cosine distance features for robust speaker verification
نویسندگان
چکیده
We use similarities with people we know already as a means to enhance the speaker verification accuracy. Motivated by this, we use cosine distance similarities with a set of reference speakers, cosine distance features (CDF), to improve the performance of speaker verification systems for clean and additive noise test conditions. We used mel frequency cepstral coefficients, power normalized cepstral coefficients, or delta spectral cepstral coefficients for deriving CDF. We then input CDF to a support vector machine (SVM) backend classifier (CDF-SVM). The performance of CDF-SVM was then compared with an i-vector with cosine distance scoring (i-CDS), and an i-vector with a backend SVM classifier (i-SVM) for stationary and non-stationary noises at different signal to noise ratio (SNR) levels. The experimental results show that, the CDF-SVM outperforms all other systems at high SNR and clean environments. However, in certain low SNR cases, i-CDS was found to be better. Finally, we fused the CDF-SVM with i-CDS and results show that the noise robustness of the combined system is significantly better than the individual systems for both high and low SNR levels.
منابع مشابه
Improving Robustness of Speaker Verification Against Mimicked Speech
Making speaker verification (SV) systems robust to spoofed/mimicked speech attacks is very important to make its use effective in security applications. In this work, we show that using a proximal support vector machine backend classifier with i-vectors as inputs (i-PSVM) can help improve the performance of SV systems for mimicked speech as non-target trials. We compared our results with the st...
متن کاملDeep Speaker Embeddings for Short-Duration Speaker Verification
The performance of a state-of-the-art speaker verification system is severely degraded when it is presented with trial recordings of short duration. In this work we propose to use deep neural networks to learn short-duration speaker embeddings. We focus on the 5s-5s condition, wherein both sides of a verification trial are 5 seconds long. In our previous work we established that learning a non-...
متن کاملExploring Hilbert envelope based acoustic features in i-vector speaker verification using HT-PLDA
In this study we evaluate the effectiveness of our recently introduced Mean Hilbert Envelope Coefficients (MHEC) in i-vector speaker verification using heavy-tailed probabilistic linear discriminant analysis (HT-PLDA) as the compensation/backend framework. The i-vectors are estimated for MHECs, and also the conventional and widely used MFCCs for comparison. The linear discriminant analysis (LDA...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملMulti-channel speaker verification based on total variability modelling
In this work we address the speaker verification task in domestic environments, monitored by multiple distributed microphones. In particular, we focus on the problem of mismatch in the propagation channel between the enrolment stage, which occurs at a fixed position, and the test phase which could happen in any location of a multi-room apartment. Building upon the Total Variability framework an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015